From localization formulas to orbital integrals

Jean-Michel Bismut

Institut de Mathématique d'Orsay

Travelling with Michèle

From representations and harmonic analysis on Lie groups to index theory
(1) The localization formulas of Berline-Vergne
(2) Index theorem and localization formulas
(3) The families index theorem

4 Selberg's trace formula
(5) The orbital integrals as Berline-Vergne formulas

6 Hypoelliptic Laplacian and orbital integrals

The localization formulas of Berline-Vergne
Index theorem and localization formulas
The families index theorem Selberg's trace formula The orbital integrals as Berline-Vergne formulas Hypoelliptic Laplacian and orbital integrals

References

A Killing vector field

The localization formulas of Berline-Vergne
Index theorem and localization formulas
The families index theorem Selberg's trace formula The orbital integrals as Berline-Vergne formulas Hypoelliptic Laplacian and orbital integrals

References

A Killing vector field

- X compact oriented Riemannian m., K Killing v. field.

The localization formulas of Berline-Vergne

A Killing vector field

- X compact oriented Riemannian m., K Killing v. field.
- $d_{K}=d+i_{K}$ equivariant de Rham.

The localization formulas of Berline-Vergne

A Killing vector field

- X compact oriented Riemannian m., K Killing v. field.
- $d_{K}=d+i_{K}$ equivariant de Rham.
- $d_{K}^{2}=L_{K}$.

The localization formulas of Berline-Vergne

A Killing vector field

- X compact oriented Riemannian m., K Killing v. field.
- $d_{K}=d+i_{K}$ equivariant de Rham.
- $d_{K}^{2}=L_{K}$.
- $X_{K}=(K=0)$ smooth submanifold.

The localization formulas of Berline-Vergne

The localization formulas of Nicole Berline and Michèle Vergne 1983

The localization formulas of Berline-Vergne

The localization formulas of Nicole Berline and Michèle Vergne 1983

Theorem
If $\mu \in \Omega(X, \mathbf{R})$ such that $d_{K} \mu=0$, then

The localization formulas of Berline-Vergne

The localization formulas of Nicole Berline and Michèle Vergne 1983

Theorem

If $\mu \in \Omega(X, \mathbf{R})$ such that $d_{K} \mu=0$, then

$$
\int_{X} \mu=\int_{X_{K}} \frac{\mu}{e_{K}\left(N_{X_{K} / X}\right)},
$$

The localization formulas of Berline-Vergne

Theorem

If $\mu \in \Omega(X, \mathbf{R})$ such that $d_{K} \mu=0$, then

$$
\int_{X} \mu=\int_{X_{K}} \frac{\mu}{e_{K}\left(N_{X_{K} / X}\right)}
$$

$e_{K}\left(N_{X_{K} / X}\right)$ equivariant Euler class of $N_{X_{K} / X}$.

The localization formulas of Berline-Vergne
Index theorem and localization formulas
The families index theorem Selberg's trace formula The orbital integrals as Berline-Vergne formulas Hypoelliptic Laplacian and orbital integrals

References

The proof by Berline-Vergne

The localization formulas of Berline-Vergne

The proof by Berline-Vergne

- α 1-form on $X \backslash X_{K}$ such that $i_{K} \alpha=1, L_{K} \alpha=0$.

The localization formulas of Berline-Vergne

The proof by Berline-Vergne

- α 1-form on $X \backslash X_{K}$ such that $i_{K} \alpha=1, L_{K} \alpha=0$.
- On $X \backslash X_{K}, 1=d^{K} \frac{\alpha}{d_{K} \alpha}$.

The localization formulas of Berline-Vergne

The proof by Berline-Vergne

- α 1-form on $X \backslash X_{K}$ such that $i_{K} \alpha=1, L_{K} \alpha=0$.
- On $X \backslash X_{K}, 1=d^{K} \frac{\alpha}{d_{K} \alpha}$.
- Use Stokes formula.

The localization formulas of Berline-Vergne
Index theorem and localization formulas
The families index theorem Selberg's trace formula
The orbital integrals as Berline-Vergne formulas Hypoelliptic Laplacian and orbital integrals

References

Another proof B86

The localization formulas of Berline-Vergne
Index theorem and localization formulas
The families index theorem Selberg's trace formula
The orbital integrals as Berline-Vergne formulas
Hypoelliptic Laplacian and orbital integrals
References

Another proof B86

- If K^{\prime} dual to $K, L_{K} K^{\prime}=0$.

The localization formulas of Berline-Vergne

Another proof B86

- If K^{\prime} dual to $K, L_{K} K^{\prime}=0$.
- If $\alpha_{t}=\exp \left(-d_{K} K^{\prime} / t\right)$, then $d_{K} \alpha_{t}=0$.

The localization formulas of Berline-Vergne

Another proof B86

- If K^{\prime} dual to $K, L_{K} K^{\prime}=0$.
- If $\alpha_{t}=\exp \left(-d_{K} K^{\prime} / t\right)$, then $d_{K} \alpha_{t}=0$.
- $\frac{\partial}{\partial t} \int_{X} \alpha_{t} \mu=\int_{X} d_{K}\left[\frac{K^{\prime}}{2 t^{2}} \alpha_{t} \mu\right]=0$.

The localization formulas of Berline-Vergne

Another proof B86

- If K^{\prime} dual to $K, L_{K} K^{\prime}=0$.
- If $\alpha_{t}=\exp \left(-d_{K} K^{\prime} / t\right)$, then $d_{K} \alpha_{t}=0$.
- $\frac{\partial}{\partial t} \int_{X} \alpha_{t} \mu=\int_{X} d_{K}\left[\frac{K^{\prime}}{2 t^{2}} \alpha_{t} \mu\right]=0$.
- As $t \rightarrow 0$, convergence of currents,

$$
\alpha_{t} \rightarrow \frac{\delta_{X_{K}}}{e_{K}\left(N_{/ X_{K} / X}, \nabla^{\left.N_{X_{K} / X}\right)}\right.}
$$

The localization formulas of Berline-Vergne

Another proof B86

- If K^{\prime} dual to $K, L_{K} K^{\prime}=0$.
- If $\alpha_{t}=\exp \left(-d_{K} K^{\prime} / t\right)$, then $d_{K} \alpha_{t}=0$.
- $\frac{\partial}{\partial t} \int_{X} \alpha_{t} \mu=\int_{X} d_{K}\left[\frac{K^{\prime}}{2 t^{2}} \alpha_{t} \mu\right]=0$.
- As $t \rightarrow 0$, convergence of currents,

$$
\alpha_{t} \rightarrow \frac{\delta_{X_{K}}}{e_{K}\left(N_{/ X_{K} / X}, \nabla^{N_{X_{K} / X}}\right)} .
$$

$\left.\bullet \underbrace{\left.\int_{X} \mu\right|_{t=+\infty}}_{\text {global }} \xrightarrow{\left.\int_{X} \alpha_{t} \mu\right|_{t>0}} \underbrace{\int_{X_{K}} \frac{\mu}{e_{K}\left(N_{X_{K} / X}\right)}}_{\text {local }}\right|_{t=0}$.

The localization formulas of Berline-Vergne
Index theorem and localization formulas
The families index theorem
Selberg's trace formula
The orbital integrals as Berline-Vergne formulas
Hypoelliptic Laplacian and orbital integrals
References

The equivariant index of the Dirac operator

The localization formulas of Berline-Vergne

The equivariant index of the Dirac operator

- X compact oriented even dimensional spin Riem. manifold, $S^{T X}$ spinors, $\left(E, \nabla^{E}\right)$ vector bundle.

The localization formulas of Berline-Vergne

The equivariant index of the Dirac operator

- X compact oriented even dimensional spin Riem. manifold, $S^{T X}$ spinors, $\left(E, \nabla^{E}\right)$ vector bundle.
- G compact Lie group acting isometrically on X, lifting to $S^{T X}, E$.

The equivariant index of the Dirac operator

- X compact oriented even dimensional spin Riem. manifold, $S^{T X}$ spinors, $\left(E, \nabla^{E}\right)$ vector bundle.
- G compact Lie group acting isometrically on X, lifting to $S^{T X}, E$.
- D^{X} Dirac operator acting on $C^{\infty}\left(X, S^{T X} \otimes E\right)$, commuting with G.

The equivariant index of the Dirac operator

- X compact oriented even dimensional spin Riem. manifold, $S^{T X}$ spinors, $\left(E, \nabla^{E}\right)$ vector bundle.
- G compact Lie group acting isometrically on X, lifting to $S^{T X}, E$.
- D^{X} Dirac operator acting on $C^{\infty}\left(X, S^{T X} \otimes E\right)$, commuting with G.
- G acts on $\operatorname{ker} D^{X}, \chi(g)=\operatorname{Tr}_{\mathrm{s}}{ }^{\operatorname{ker} D^{X}}[g], \chi(1)=\operatorname{Ind} D_{+}^{X}$.

The equivariant index of the Dirac operator

- X compact oriented even dimensional spin Riem. manifold, $S^{T X}$ spinors, $\left(E, \nabla^{E}\right)$ vector bundle.
- G compact Lie group acting isometrically on X, lifting to $S^{T X}, E$.
- D^{X} Dirac operator acting on $C^{\infty}\left(X, S^{T X} \otimes E\right)$, commuting with G.
- G acts on $\operatorname{ker} D^{X}, \chi(g)=\operatorname{Tr}_{\mathrm{s}}{ }^{\operatorname{ker} D^{X}}[g], \chi(1)=\operatorname{Ind} D_{+}^{X}$.
- Atiyah-Bott fixed point formula,

$$
\chi(g)=\int_{X_{g}} \widehat{A}_{g}(T X) \operatorname{ch}_{g}(E)
$$

The localization formulas of Berline-Vergne

The heat equation proof of the fixed point formulas

The localization formulas of Berline-Vergne

The heat equation proof of the fixed point formulas

- McKean-Singer: $t>0, \chi(g)=\operatorname{Tr}_{\mathrm{s}}\left[g \exp \left(-t D^{X, 2}\right)\right]$.

The localization formulas of Berline-Vergne

The heat equation proof of the fixed point formulas

- McKean-Singer: $t>0, \chi(g)=\operatorname{Tr}_{\mathrm{s}}\left[g \exp \left(-t D^{X, 2}\right)\right]$.
- Make $t \rightarrow 0$ and use local index theoretic techniques...

The heat equation proof of the fixed point formulas

- McKean-Singer: $t>0, \chi(g)=\operatorname{Tr}_{\mathrm{s}}\left[g \exp \left(-t D^{X, 2}\right)\right]$.
- Make $t \rightarrow 0$ and use local index theoretic techniques...

The localization formulas of Berline-Vergne Index theorem and localization formulas

The families index theorem
Selberg's trace formula
The orbital integrals as Berline-Vergne formulas
Hypoelliptic Laplacian and orbital integrals
References

Berline-Vergne and local index theory when $g=1$

The localization formulas of Berline-Vergne

Berline-Vergne and local index theory when $g=1$

- $L X$ smooth loop space of X.

The localization formulas of Berline-Vergne

Berline-Vergne and local index theory when $g=1$

- $L X$ smooth loop space of X.
- For $t>0, \operatorname{Ind} D_{+}^{X}=\underbrace{\operatorname{Tr}_{\mathrm{s}}\left[\exp \left(-t D^{X, 2}\right)\right]}_{\text {Hamiltonian }}=\underbrace{\int_{L X} \mu_{t}}_{\text {Lagrangian }}$.

Berline-Vergne and local index theory when $g=1$

- $L X$ smooth loop space of X.
- For $t>0, \operatorname{Ind} D_{+}^{X}=\underbrace{\operatorname{Tr}_{\mathrm{s}}\left[\exp \left(-t D^{X, 2}\right)\right]}_{\text {Hamiltonian }}=\underbrace{\int_{L X} \mu_{t}}_{\text {Lagrangian }}$.
- Atiyah-Witten: index theorem formal consequence of localization on loop space $L X$ w.r.t. Killing vector field $Z(x)=\dot{x}$ (d_{K} supersymmetry).

Berline-Vergne and local index theory when $g=1$

- $L X$ smooth loop space of X.
- For $t>0, \operatorname{Ind} D_{+}^{X}=\underbrace{\operatorname{Tr}_{s}\left[\exp \left(-t D^{X, 2}\right)\right]}_{\text {Hamiltonian }}=\underbrace{\int_{L X} \mu_{t}}_{\text {Lagrangian }}$.
- Atiyah-Witten: index theorem formal consequence of localization on loop space $L X$ w.r.t. Killing vector field $Z(x)=\dot{x}$ (d_{K} supersymmetry).
- I had shown how the heat equation method provides the proper proof of localization in this infinite dimensional context.

The localization formulas of Berline-Vergne Index theorem and localization formulas

The families index theorem Selberg's trace formula The orbital integrals as Berline-Vergne formulas Hypoelliptic Laplacian and orbital integrals

The Kirillov like formulas

The localization formulas of Berline-Vergne

The Kirillov like formulas

- $K \in \mathfrak{g}$ defines Killing vector field K^{X} on X.

The localization formulas of Berline-Vergne

The Kirillov like formulas

- $K \in \mathfrak{g}$ defines Killing vector field K^{X} on X.
- $|K|$ small, $\widehat{A}_{K}(T X) \mathrm{ch}_{K}(E) d_{K^{-}}$-cohomology class on X.

The Kirillov like formulas

- $K \in \mathfrak{g}$ defines Killing vector field K^{X} on X.
- $|K|$ small, $\widehat{A}_{K}(T X) \mathrm{ch}_{K}(E) d_{K^{-}}$-cohomology class on X.
- By BV formula, for $|K|$ small,

The Kirillov like formulas

- $K \in \mathfrak{g}$ defines Killing vector field K^{X} on X.
- $|K|$ small, $\widehat{A}_{K}(T X) \mathrm{ch}_{K}(E) d_{K^{-}}$-cohomology class on X.
- By BV formula, for $|K|$ small,

$$
\chi\left(e^{K}\right)=\underbrace{\int_{X_{K}} \widehat{A}_{e^{K}}(T X) \operatorname{ch}_{e^{K}}(E)}_{\text {Lefschetz }}=\underbrace{\int_{X} \widehat{A}_{K}(T X) \operatorname{ch}_{K}(E)}_{\text {Kirillov }}
$$

- Example: generic coadjoint orbits G / T.

The localization formulas of Berline-Vergne Index theorem and localization formulas

The families index theorem
Selberg's trace formula
The orbital integrals as Berline-Vergne formulas
Hypoelliptic Laplacian and orbital integrals
References

A question by Berline and Vergne

The localization formulas of Berline-Vergne

A question by Berline and Vergne

- Give a direct heat equation proof of Kirillov (or infinitesimal Lefschetz) formula ?

The localization formulas of Berline-Vergne

A question by Berline and Vergne

- Give a direct heat equation proof of Kirillov (or infinitesimal Lefschetz) formula?
- My formal answer: K^{X} lifts to $K^{L X}$ on $L X$, and $\left[K^{L X}, Z\right]=0 \ldots$

A question by Berline and Vergne

- Give a direct heat equation proof of Kirillov (or infinitesimal Lefschetz) formula?
- My formal answer: K^{X} lifts to $K^{L X}$ on $L X$, and $\left[K^{L X}, Z\right]=0 \ldots$
- ...so that one should (formally!) use localization with two commuting Killing vector fields instead of one.

The localization formulas of Berline-Vergne Index theorem and localization formulas

The families index theorem
Selberg's trace formula
The orbital integrals as Berline-Vergne formulas
Hypoelliptic Laplacian and orbital integrals
References

The rigorous solution B85

The localization formulas of Berline-Vergne

The rigorous solution B85

- McKean-Singer $\chi\left(e^{K}\right)=\operatorname{Tr}_{\mathrm{s}}\left[\exp \left(-L_{K}-t D^{X, 2}\right)\right]$.

The localization formulas of Berline-Vergne

The rigorous solution B85

- McKean-Singer $\chi\left(e^{K}\right)=\operatorname{Tr}_{\mathrm{s}}\left[\exp \left(-L_{K}-t D^{X, 2}\right)\right]$.
- Replace $\sqrt{t} D^{X}$ by $\sqrt{t} D^{X}+c\left(K^{X}\right) / 4 \sqrt{t}$.

The rigorous solution B85

- McKean-Singer $\chi\left(e^{K}\right)=\operatorname{Tr}_{\mathrm{s}}\left[\exp \left(-L_{K}-t D^{X, 2}\right)\right]$.
- Replace $\sqrt{t} D^{X}$ by $\sqrt{t} D^{X}+c\left(K^{X}\right) / 4 \sqrt{t}$.
- $\chi\left(e^{K}\right)=\operatorname{Tr}_{\mathrm{s}}\left[\exp \left(-L_{K}-\left(\sqrt{t} D^{X}+c\left(K^{X}\right) / 4 \sqrt{t}\right)\right)^{2}\right]$.

The rigorous solution B85

- McKean-Singer $\chi\left(e^{K}\right)=\operatorname{Tr}_{\mathrm{s}}\left[\exp \left(-L_{K}-t D^{X, 2}\right)\right]$.
- Replace $\sqrt{t} D^{X}$ by $\sqrt{t} D^{X}+c\left(K^{X}\right) / 4 \sqrt{t}$.
- $\chi\left(e^{K}\right)=\operatorname{Tr}_{\mathrm{s}}\left[\exp \left(-L_{K}-\left(\sqrt{t} D^{X}+c\left(K^{X}\right) / 4 \sqrt{t}\right)\right)^{2}\right]$.
- Make $t \rightarrow 0$ and get Kirillov like formula.

The rigorous solution B85

- McKean-Singer $\chi\left(e^{K}\right)=\operatorname{Tr}_{\mathrm{s}}\left[\exp \left(-L_{K}-t D^{X, 2}\right)\right]$.
- Replace $\sqrt{t} D^{X}$ by $\sqrt{t} D^{X}+c\left(K^{X}\right) / 4 \sqrt{t}$.
- $\chi\left(e^{K}\right)=\operatorname{Tr}_{\mathrm{s}}\left[\exp \left(-L_{K}-\left(\sqrt{t} D^{X}+c\left(K^{X}\right) / 4 \sqrt{t}\right)\right)^{2}\right]$.
- Make $t \rightarrow 0$ and get Kirillov like formula.
- Nicole Berline and Michèle Vergne's reaction: 'Now, you should prove the families index theorem!'

The localization formulas of Berline-Vergne

A simple observation

The localization formulas of Berline-Vergne

A simple observation

- $\pi: P \rightarrow S K$-principal bundle.

The localization formulas of Berline-Vergne

A simple observation

- $\pi: P \rightarrow S K$-principal bundle.
- $M=P \times_{K} X$ projects on S with fiber X.

The localization formulas of Berline-Vergne

A simple observation

- $\pi: P \rightarrow S K$-principal bundle.
- $M=P \times_{K} X$ projects on S with fiber X.
- Connection on P with curvature R induces connection on M.

A simple observation

- $\pi: P \rightarrow S K$-principal bundle.
- $M=P \times_{K} X$ projects on S with fiber X.
- Connection on P with curvature R induces connection on M.
- $\operatorname{ch}(\operatorname{Ind} D)=\operatorname{Tr}_{\mathrm{s}}{ }^{\operatorname{Ind} D}[\exp (-R / 2 i \pi)]$ computed by Kirillov formula...

A simple observation

- $\pi: P \rightarrow S K$-principal bundle.
- $M=P \times_{K} X$ projects on S with fiber X.
- Connection on P with curvature R induces connection on M.
- $\operatorname{ch}(\operatorname{Ind} D)=\operatorname{Tr}_{\mathrm{s}}{ }^{\operatorname{Ind} D}[\exp (-R / 2 i \pi)]$ computed by Kirillov formula...
- ... and gives families index theorem in this special case.

The localization formulas of Berline-Vergne

Quillen's superconnections

The localization formulas of Berline-Vergne

Quillen's superconnections

- In 1985, Quillen's superconnections: vast extension of connections and Chern-Weil theory.

The localization formulas of Berline-Vergne

Quillen's superconnections

- In 1985, Quillen's superconnections: vast extension of connections and Chern-Weil theory.
- $\pi: M \rightarrow S$ projection with fiber X.

The localization formulas of Berline-Vergne

Quillen's superconnections

- In 1985, Quillen's superconnections: vast extension of connections and Chern-Weil theory.
- $\pi: M \rightarrow S$ projection with fiber X.
- D^{X} family of Dirac operators.

Quillen's superconnections

- In 1985, Quillen's superconnections: vast extension of connections and Chern-Weil theory.
- $\pi: M \rightarrow S$ projection with fiber X.
- D^{X} family of Dirac operators.
- I introduced the Levi-Civita superconnection

$$
A_{t}=\nabla^{C^{\infty}}\left(X, S^{T X} \otimes F\right)+\sqrt{t} D^{X}-c\left(T^{H}\right) / 4 \sqrt{t}
$$

Quillen's superconnections

- In 1985, Quillen's superconnections: vast extension of connections and Chern-Weil theory.
- $\pi: M \rightarrow S$ projection with fiber X.
- D^{X} family of Dirac operators.
- I introduced the Levi-Civita superconnection

$$
A_{t}=\nabla^{C^{\infty}}\left(X, S^{T X} \otimes F\right)+\sqrt{t} D^{X}-c\left(T^{H}\right) / 4 \sqrt{t}
$$

- Compare with $\sqrt{t} D^{X}+c\left(K^{X}\right) / 4 \sqrt{t}$.

The localization formulas of Berline-Vergne

The local families index theorem

The localization formulas of Berline-Vergne

The local families index theorem

Theorem B86

The localization formulas of Berline-Vergne

The local families index theorem

Theorem B86

(1) $\operatorname{ch}\left(A_{t}\right)$ represents ch $\left(\operatorname{Ind} D^{X}\right)$ in $H(S, \mathbf{R})$.

The local families index theorem

Theorem B86

(1) ch $\left(A_{t}\right)$ represents ch $\left(\operatorname{Ind} D^{X}\right)$ in $H(S, \mathbf{R})$.
(2) As $t \rightarrow 0$,

$$
\operatorname{ch}\left(A_{t}\right) \rightarrow \pi_{*}\left[\widehat{A}\left(T X, \nabla^{T X}\right) \operatorname{ch}\left(E, \nabla^{E}\right)\right]
$$

local version of AS families index theorem.

The localization formulas of Berline-Vergne

Selberg's trace formula 56

The localization formulas of Berline-Vergne
The families index theorem
Selberg's trace formula
The orbital integrals as Berline-Vergne formulas
Hypoelliptic Laplacian and orbital integrals
References

Selberg's trace formula 56

- X Riem. surface of constant scalar curvature -2 .

The localization formulas of Berline-Vergne

Selberg's trace formula 56

- X Riem. surface of constant scalar curvature -2 .

$$
\underbrace{\operatorname{Tr}\left[\exp \left(t \Delta^{X} / 2\right)\right]}_{\text {heat kernel }}=\underbrace{\frac{\exp (-t / 8)}{2 \pi t} \operatorname{Vol}(X)}_{\text {closed geodesics }}
$$

Selberg's trace formula 56

- X Riem. surface of constant scalar curvature -2 .

$$
\begin{gathered}
\underbrace{\operatorname{Tr}\left[\exp \left(t \Delta^{X} / 2\right)\right]}_{\text {heat kernel }}=\underbrace{\frac{\exp (-t / 8)}{2 \pi t} \operatorname{Vol}(X)}_{\text {closed geodesics }} \\
\int_{\mathbf{R}} \exp \left(-y^{2} / 2 t\right) \frac{y / 2}{\sinh (y / 2)} \frac{d y}{\sqrt{2 \pi t}}
\end{gathered}
$$

Selberg's trace formula 56

- X Riem. surface of constant scalar curvature -2 .

$$
\begin{gathered}
\underbrace{\operatorname{Tr}\left[\exp \left(t \Delta^{X} / 2\right)\right]}_{\text {heat kernel }}=\underbrace{\frac{\exp (-t / 8)}{2 \pi t} \operatorname{Vol}(X)}_{\text {closed geodesics }} \\
\int_{\mathbf{R}} \exp \left(-y^{2} / 2 t\right) \frac{y / 2}{\sinh (y / 2)} \frac{d y}{\sqrt{2 \pi t}} \\
\quad+\sum_{\gamma \neq 0} \frac{\operatorname{Vol}_{\gamma}}{\sqrt{2 \pi t}} \frac{\exp \left(-\ell_{\gamma}^{2} / 2 t-t / 8\right)}{2 \sinh \left(\ell_{\gamma} / 2\right)} .
\end{gathered}
$$

Selberg's trace formula 56

- X Riem. surface of constant scalar curvature -2 .

$$
\begin{gathered}
\underbrace{\operatorname{Tr}\left[\exp \left(t \Delta^{X} / 2\right)\right]}_{\text {heat kernel }}=\underbrace{\frac{\exp (-t / 8)}{2 \pi t} \operatorname{Vol}(X)}_{\text {closed geodesics }} \\
\int_{\mathbf{R}} \exp \left(-y^{2} / 2 t\right) \frac{y / 2}{\sinh (y / 2)} \frac{d y}{\sqrt{2 \pi t}} \\
\quad+\sum_{\gamma \neq 0} \frac{\operatorname{Vol}_{\gamma}}{\sqrt{2 \pi t}} \frac{\exp \left(-\ell_{\gamma}^{2} / 2 t-t / 8\right)}{2 \sinh \left(\ell_{\gamma} / 2\right)} .
\end{gathered}
$$

- Right-hand side orbital integrals for $\mathrm{SL}_{2}(\mathbf{R})$.

The localization formulas of Berline-Vergne

The symmetric space X

The localization formulas of Berline-Vergne

The symmetric space X

- G real reductive group, K maximal compact subgroup, $X=G / K$ symmetric space.

The symmetric space X

- G real reductive group, K maximal compact subgroup, $X=G / K$ symmetric space.
- $\mathfrak{g}=\mathfrak{p} \oplus \mathfrak{k}$ Cartan splitting equipped with symmetric bilinear form $B>0$ on $\mathfrak{p},<0$ on $\mathfrak{k} \ldots$
- G real reductive group, K maximal compact subgroup, $X=G / K$ symmetric space.
- $\mathfrak{g}=\mathfrak{p} \oplus \mathfrak{k}$ Cartan splitting equipped with symmetric bilinear form $B>0$ on $\mathfrak{p},<0$ on $\mathfrak{k} \ldots$
- ... descends to bundle of Lie algebras $T X \oplus N$ on X.
- G real reductive group, K maximal compact subgroup, $X=G / K$ symmetric space.
- $\mathfrak{g}=\mathfrak{p} \oplus \mathfrak{k}$ Cartan splitting equipped with symmetric bilinear form $B>0$ on $\mathfrak{p},<0$ on $\mathfrak{k} \ldots$
- ... descends to bundle of Lie algebras $T X \oplus N$ on X.

Abstract

Example $G=\mathrm{SL}_{2}(\mathbf{R}), K=S^{1}, X$ upper half-plane, $T X \oplus N$ of dimension 3.

The localization formulas of Berline-Vergne

Semi-simple orbital integrals

The localization formulas of Berline-Vergne

Semi-simple orbital integrals

- $C^{\mathfrak{g}}$ Casimir.

The localization formulas of Berline-Vergne

Semi-simple orbital integrals

- $C^{\mathfrak{g}}$ Casimir.
- $\rho: K \rightarrow E$ descends to vector bundle F on X.

The localization formulas of Berline-Vergne

Semi-simple orbital integrals

- $C^{\mathfrak{g}}$ Casimir.
- $\rho: K \rightarrow E$ descends to vector bundle F on X.
- $C^{\mathfrak{q}, X}$ acts on $C^{\infty}(X, F)$ like a shifted Bochner Laplacian.

Semi-simple orbital integrals

- $C^{\mathfrak{g}}$ Casimir.
- $\rho: K \rightarrow E$ descends to vector bundle F on X.
- $C^{\mathfrak{q}, X}$ acts on $C^{\infty}(X, F)$ like a shifted Bochner Laplacian.
- $\gamma \in G$ semi-simple, $[\gamma]$ conjugacy class.

Semi-simple orbital integrals

- $C^{\mathfrak{g}}$ Casimir.
- $\rho: K \rightarrow E$ descends to vector bundle F on X.
- $C^{\mathfrak{q}, X}$ acts on $C^{\infty}(X, F)$ like a shifted Bochner Laplacian.
- $\gamma \in G$ semi-simple, $[\gamma]$ conjugacy class.
- For $t>0, \operatorname{Tr}^{[\gamma]}\left[\exp \left(-t C^{\mathfrak{g}, X} / 2\right)\right]$ orbital integral of heat kernel on orbit of γ :

$$
I([\gamma])=\int_{Z(\gamma) \backslash G} \operatorname{Tr}^{E}\left[p_{t}^{X}\left(g^{-1} \gamma g\right)\right] d g
$$

Semi-simple orbital integrals

- $C^{\mathfrak{g}}$ Casimir.
- $\rho: K \rightarrow E$ descends to vector bundle F on X.
- $C^{\mathfrak{q}, X}$ acts on $C^{\infty}(X, F)$ like a shifted Bochner Laplacian.
- $\gamma \in G$ semi-simple, $[\gamma]$ conjugacy class.
- For $t>0, \operatorname{Tr}^{[\gamma]}\left[\exp \left(-t C^{\mathrm{g}, X} / 2\right)\right]$ orbital integral of heat kernel on orbit of γ :

$$
I([\gamma])=\int_{Z(\gamma) \backslash G} \operatorname{Tr}^{E}\left[p_{t}^{X}\left(g^{-1} \gamma g\right)\right] d g .
$$

- If $Z=\Gamma \backslash X$, orbital integrals part of trace of heat kernel.

The localization formulas of Berline-Vergne
Index theorem and localization formulas
The families index theorem
Selberg's trace formula
The orbital integrals as Berline-Vergne formulas Hypoelliptic Laplacian and orbital integrals

References

The centralizer of γ

The localization formulas of Berline-Vergne

The centralizer of γ

- $\gamma=e^{a} k^{-1}, a \in \mathfrak{p}, k \in K, \operatorname{Ad}(k) a=a$.

The localization formulas of Berline-Vergne

The centralizer of γ

- $\gamma=e^{a} k^{-1}, a \in \mathfrak{p}, k \in K, \operatorname{Ad}(k) a=a$.
- $Z(\gamma)$ centralizer of $\gamma, \mathfrak{z}(\gamma)=\mathfrak{p}(\gamma) \oplus \mathfrak{k}(\gamma)$ Lie algebra of $Z(\gamma)$.

The localization formulas of Berline-Vergne

The centralizer of γ

- $\gamma=e^{a} k^{-1}, a \in \mathfrak{p}, k \in K, \operatorname{Ad}(k) a=a$.
- $Z(\gamma)$ centralizer of $\gamma, \mathfrak{z}(\gamma)=\mathfrak{p}(\gamma) \oplus \mathfrak{k}(\gamma)$ Lie algebra of $Z(\gamma)$.
- $X(\gamma)=Z(\gamma) / K(\gamma)$ symmetric space.
- $\gamma=e^{a} k^{-1}, a \in \mathfrak{p}, k \in K, \operatorname{Ad}(k) a=a$.
- $Z(\gamma)$ centralizer of $\gamma, \mathfrak{z}(\gamma)=\mathfrak{p}(\gamma) \oplus \mathfrak{k}(\gamma)$ Lie algebra of $Z(\gamma)$.
- $X(\gamma)=Z(\gamma) / K(\gamma)$ symmetric space.
- $X(\gamma) \subset X$ totally geodesic.

The localization formulas of Berline-Vergne
The families index theorem
Selberg's trace formula
The orbital integrals as Berline-Vergne formulas
Hypoelliptic Laplacian and orbital integrals
References

Geometric description of the orbital integral

The localization formulas of Berline-Vergne
The families index theorem
Selberg's trace formula
The orbital integrals as Berline-Vergne formulas
Hypoelliptic Laplacian and orbital integrals
References

Geometric description of the orbital integral

$$
I(\gamma)=\int_{N_{X(\gamma) / X}} \operatorname{Tr}\left[\gamma p_{t}^{X}(Y, \gamma Y)\right] \underbrace{r(Y)}_{\text {Jacobian }} d Y .
$$

The localization formulas of Berline-Vergne

Geometric description of the orbital integral

$$
I(\gamma)=\int_{N_{X(\gamma) / X}} \operatorname{Tr}\left[\gamma p_{t}^{X}(Y, \gamma Y)\right] \underbrace{r(Y)}_{\text {Jacobian }} d Y .
$$

The localization formulas of Berline-Vergne

Geometric description of the orbital integral

$$
I(\gamma)=\int_{N_{X(\gamma) / X}} \operatorname{Tr}\left[\gamma p_{t}^{X}(Y, \gamma Y)\right] \underbrace{r(Y)}_{\text {Jacobian }} d Y .
$$

The localization formulas of Berline-Vergne

Semi-simple orbital integrals

The localization formulas of Berline-Vergne

Semi-simple orbital integrals

Theorem (B. 2011)
 If $\gamma=e^{a} k^{-1}, a \in \mathfrak{p}, k \in K, \operatorname{Ad}(k) a=a$,

The localization formulas of Berline-Vergne

Semi-simple orbital integrals

Theorem (B. 2011)

If $\gamma=e^{a} k^{-1}, a \in \mathfrak{p}, k \in K, \operatorname{Ad}(k) a=a$, there is an explicit function $\mathcal{J}_{\gamma}\left(Y_{0}^{\mathfrak{k}}\right), Y_{0}^{\mathfrak{k}} \in i \mathfrak{k}(\gamma)$, such that

The localization formulas of Berline-Vergne

Semi-simple orbital integrals

Theorem (B. 2011)

If $\gamma=e^{a} k^{-1}, a \in \mathfrak{p}, k \in K, \operatorname{Ad}(k) a=a$, there is an explicit function $\mathcal{J}_{\gamma}\left(Y_{0}^{\mathfrak{k}}\right), Y_{0}^{\mathfrak{k}} \in \mathfrak{i f}(\gamma)$, such that

$$
\begin{aligned}
& \operatorname{Tr}^{[\gamma]}\left[\exp \left(-t\left(C^{\mathfrak{g}, X}-c\right) / 2\right)\right]=\frac{\exp \left(-|a|^{2} / 2 t\right)}{(2 \pi t)^{p / 2}} \\
& \quad \int_{i \mathfrak{E}(\gamma)} \mathcal{J}_{\gamma}\left(Y_{0}^{\mathrm{k}}\right) \operatorname{Tr}^{E}\left[k^{-1} e^{-Y_{0}^{\mathrm{t}}}\right] \exp \left(-\left|Y_{0}^{\mathrm{k}}\right|^{2} / 2 t\right) \frac{d Y_{0}^{\mathrm{k}}}{(2 \pi t)^{q / 2}} .
\end{aligned}
$$

Semi-simple orbital integrals

Theorem (B. 2011)

If $\gamma=e^{a} k^{-1}, a \in \mathfrak{p}, k \in K, \operatorname{Ad}(k) a=a$, there is an explicit function $\mathcal{J}_{\gamma}\left(Y_{0}^{\mathfrak{k}}\right), Y_{0}^{\mathfrak{k}} \in \mathfrak{i k}(\gamma)$, such that

$$
\begin{aligned}
& \operatorname{Tr}^{[\gamma]}\left[\exp \left(-t\left(C^{\mathrm{q}, X}-c\right) / 2\right)\right]=\frac{\exp \left(-|a|^{2} / 2 t\right)}{(2 \pi t)^{p / 2}} \\
& \quad \int_{i \mathfrak{t}(\gamma)} \mathcal{J}_{\gamma}\left(Y_{0}^{\mathrm{t}}\right) \operatorname{Tr}^{E}\left[k^{-1} e^{-Y_{0}^{\mathrm{t}}}\right] \exp \left(-\left|Y_{0}^{\mathrm{t}}\right|^{2} / 2 t\right) \frac{d Y_{0}^{\mathrm{t}}}{(2 \pi t)^{q / 2}} .
\end{aligned}
$$

Localization from G to \mathfrak{g}.

The localization formulas of Berline-Vergne
Index theorem and localization formulas
The families index theorem
Selberg's trace formula
The orbital integrals as Berline-Vergne formulas
Hypoelliptic Laplacian and orbital integrals
References

The function $\mathcal{J}_{\gamma}\left(Y_{0}^{\mathrm{t}}\right), Y_{0}^{\mathfrak{t}} \in \mathfrak{i k}(\gamma)$

The localization formulas of Berline-Vergne

The function $\mathcal{J}_{\gamma}\left(Y_{0}^{\mathfrak{k}}\right), Y_{0}^{\mathfrak{k}} \in i \mathfrak{k}(\gamma)$

Definition

$$
\begin{aligned}
& \mathcal{J}_{\gamma}\left(Y_{0}^{\mathfrak{t}}\right)=\frac{1}{\left.|\operatorname{det}(1-\operatorname{Ad}(\gamma))|_{\mathfrak{z}_{0}^{\perp}}\right|^{1 / 2}} \frac{\widehat{A}\left(\left.\operatorname{ad}\left(Y_{0}^{\mathfrak{t}}\right)\right|_{\mathfrak{p}(\gamma)}\right)}{\widehat{A}\left(\operatorname{ad}\left(Y_{0}^{\mathfrak{k}}\right)_{\mathfrak{e}(\gamma)}\right)} \\
& {\left[\frac{1}{\left.\operatorname{det}\left(1-\operatorname{Ad}\left(k^{-1}\right)\right)\right|_{\mathbf{z}_{\stackrel{\rightharpoonup}{0}}(\gamma)}}\right.} \\
& \left.\frac{\left.\operatorname{det}\left(1-\operatorname{Ad}\left(k^{-1} e^{-Y_{0}^{t}}\right)\right)\right|_{\mathfrak{e}_{0}^{\perp}(\gamma)}}{\left.\operatorname{det}\left(1-\operatorname{Ad}\left(k^{-1} e^{-Y_{0}^{\ell}}\right)\right)\right|_{\mathfrak{p}_{0}^{\perp}(\gamma)}}\right]^{1 / 2} .
\end{aligned}
$$

The localization formulas of Berline-Vergne
Index theorem and localization formulas
The families index theorem
Selberg's trace formula
The orbital integrals as Berline-Vergne formulas
Hypoelliptic Laplacian and orbital integrals
References

The case $\gamma=1$

The localization formulas of Berline-Vergne
Index theorem and localization formulas
The families index theorem
Selberg's trace formula
The orbital integrals as Berline-Vergne formulas
Hypoelliptic Laplacian and orbital integrals
References

The case $\gamma=1$

- For $Y_{0}^{\mathfrak{k}} \in i \mathfrak{k}$, put

$$
J_{1}\left(Y_{0}^{\mathfrak{k}}\right)=\frac{\widehat{A}\left(\left.\operatorname{ad}\left(Y_{0}^{\mathfrak{k}}\right)\right|_{\mathfrak{p}}\right)}{\widehat{A}\left(\left.\operatorname{ad}\left(Y_{0}^{\mathfrak{k}}\right)\right|_{\mathfrak{k}}\right)} .
$$

The localization formulas of Berline-Vergne

The case $\gamma=1$

- For $Y_{0}^{\mathrm{k}} \in i \mathfrak{k}$, put

$$
J_{1}\left(Y_{0}^{\mathfrak{k}}\right)=\frac{\widehat{A}\left(\left.\operatorname{ad}\left(Y_{0}^{\mathfrak{k}}\right)\right|_{\mathfrak{p}}\right)}{\widehat{A}\left(\left.\operatorname{ad}\left(Y_{0}^{\mathfrak{k}}\right)\right|_{\mathfrak{k}}\right)} .
$$

$$
\begin{aligned}
& \operatorname{Tr}_{\mathrm{s}}\left[P_{t}^{X}(x, x)\right]=e^{-c t / 2} \frac{1}{(2 \pi t)^{p / 2}} \\
& \quad \int_{i \mathbb{k}} J_{1}\left(Y_{0}^{\mathrm{t}}\right) \operatorname{Tr}^{E}\left[e^{-Y_{0}^{\mathrm{t}}}\right] \exp \left(-\left|Y_{0}^{\mathfrak{k}}\right|^{2} / 2 t\right) \frac{d Y_{0}^{\mathrm{k}}}{(2 \pi t)^{q / 2}} .
\end{aligned}
$$

The localization formulas of Berline-Vergne

The analogy with Berline-Vergne

The localization formulas of Berline-Vergne

The analogy with Berline-Vergne

The analogy with Berline-Vergne

The analogy with Berline-Vergne

$$
\begin{aligned}
& \bullet \underbrace{\left.L(g)\right|_{t=+\infty}}_{\text {global }} \stackrel{\left.\operatorname{Tr}_{\mathrm{s}}\left[g \exp \left(-t D^{X, 2}\right)\right]\right|_{t>0}}{\left.\int_{X_{g}} \widehat{A}_{g}(T X) \operatorname{ch}_{g}(E)\right|_{t=0}} \text {. } \\
& \left.\bullet \underbrace{\left.\int_{X} \mu\right|_{t=+\infty}}_{\text {global }} \longrightarrow \underbrace{\left.\int_{X} \alpha_{t} \mu\right|_{t>0}}_{\text {local }} \int_{X_{K}} \frac{\mu}{e_{K}\left(N_{X_{K} / X}\right)}\right|_{t=0} .
\end{aligned}
$$

The localization formulas of Berline-Vergne

The analysis on $G \times_{K} \mathfrak{g}$

The localization formulas of Berline-Vergne

The analysis on $G \times_{K} \mathfrak{g}$

- The analysis will be done on $G \times_{K} \mathfrak{g} \ldots$

The localization formulas of Berline-Vergne

The analysis on $G \times{ }_{K} \mathfrak{g}$

- The analysis will be done on $G \times_{K} \mathfrak{g} \ldots$
- ... which is the total space $\widehat{\mathcal{X}}$ of $T X \oplus N$ over $X=G / K$.

The localization formulas of Berline-Vergne

The analysis on $G \times{ }_{K} \mathfrak{g}$

- The analysis will be done on $G \times_{K} \mathfrak{g} \ldots$
- ... which is the total space $\widehat{\mathcal{X}}$ of $T X \oplus N$ over $X=G / K$.
- Two separate constructions on G and on \mathfrak{g}.

The localization formulas of Berline-Vergne

Dirac, Casimir and Kostant

The localization formulas of Berline-Vergne

Dirac, Casimir and Kostant

- $C^{\mathfrak{g}}=-\sum e_{i}^{*} e_{i}$ Casimir (differential operator on G), positive on \mathfrak{p}, negative on \mathfrak{k}.

The localization formulas of Berline-Vergne

Dirac, Casimir and Kostant

- $C^{\mathfrak{g}}=-\sum e_{i}^{*} e_{i}$ Casimir (differential operator on G), positive on \mathfrak{p}, negative on \mathfrak{k}.
- $\widehat{c}(\mathfrak{g})$ Clifford algebra of $(\mathfrak{g},-B)$ acts on $\Lambda^{*}\left(\mathfrak{g}^{*}\right)$.

Dirac, Casimir and Kostant

- $C^{\mathfrak{g}}=-\sum e_{i}^{*} e_{i}$ Casimir (differential operator on G), positive on \mathfrak{p}, negative on \mathfrak{k}.
- $\widehat{c}(\mathfrak{g})$ Clifford algebra of $(\mathfrak{g},-B)$ acts on $\Lambda^{\cdot}\left(\mathfrak{g}^{*}\right)$.
- $U(\mathfrak{g})$ enveloping algebra (left-invariant differential operators on G).

Dirac, Casimir and Kostant

- $C^{\mathfrak{g}}=-\sum e_{i}^{*} e_{i}$ Casimir (differential operator on G), positive on \mathfrak{p}, negative on \mathfrak{k}.
- $\widehat{c}(\mathfrak{g})$ Clifford algebra of $(\mathfrak{g},-B)$ acts on $\Lambda^{*}\left(\mathfrak{g}^{*}\right)$.
- $U(\mathfrak{g})$ enveloping algebra (left-invariant differential operators on G).
- $\widehat{D}^{\mathrm{Ko}} \in \widehat{c}(\mathfrak{g}) \otimes U(\mathfrak{g})$ Dirac operator of Kostant.

Dirac, Casimir and Kostant

- $C^{\mathfrak{g}}=-\sum e_{i}^{*} e_{i}$ Casimir (differential operator on G), positive on \mathfrak{p}, negative on \mathfrak{k}.
- $\widehat{c}(\mathfrak{g})$ Clifford algebra of $(\mathfrak{g},-B)$ acts on $\Lambda^{\cdot}\left(\mathfrak{g}^{*}\right)$.
- $U(\mathfrak{g})$ enveloping algebra (left-invariant differential operators on G).
- $\widehat{D}^{\mathrm{Ko}} \in \widehat{c}(\mathfrak{g}) \otimes U(\mathfrak{g})$ Dirac operator of Kostant.
- $\kappa^{\mathfrak{g}}(U, V, W)=B([U, V], W)$ closed 3 -form.

Dirac, Casimir and Kostant

- $C^{\mathfrak{g}}=-\sum e_{i}^{*} e_{i}$ Casimir (differential operator on G), positive on \mathfrak{p}, negative on \mathfrak{k}.
- $\widehat{c}(\mathfrak{g})$ Clifford algebra of $(\mathfrak{g},-B)$ acts on $\Lambda^{\cdot}\left(\mathfrak{g}^{*}\right)$.
- $U(\mathfrak{g})$ enveloping algebra (left-invariant differential operators on G).
- $\widehat{D}^{\mathrm{Ko}} \in \widehat{c}(\mathfrak{g}) \otimes U(\mathfrak{g})$ Dirac operator of Kostant.
- $\kappa^{\mathfrak{g}}(U, V, W)=B([U, V], W)$ closed 3-form.
- $\widehat{D}^{\mathrm{Ko}}=\widehat{c}\left(e_{i}^{*}\right) e_{i}+\frac{1}{2} \widehat{c}\left(-\kappa^{\mathfrak{g}}\right)$.

The localization formulas of Berline-Vergne
Index theorem and localization formulas
The families index theorem Selberg's trace formula
The orbital integrals as Berline-Vergne formulas Hypoelliptic Laplacian and orbital integrals

A formula of Kostant

The localization formulas of Berline-Vergne

The orbital integrals as Berline-Vergne formulas Hypoelliptic Laplacian and orbital integrals

References

A formula of Kostant

Theorem (Kostant)

$$
\widehat{D}^{\mathrm{Ko}, 2}=-C^{\mathfrak{g}}+B^{*}\left(\rho^{\mathfrak{g}}, \rho^{\mathfrak{g}}\right) .
$$

The localization formulas of Berline-Vergne

The orbital integrals as Berline-Vergne formulas
Hypoelliptic Laplacian and orbital integrals
References

A formula of Kostant

Theorem (Kostant)

$$
\widehat{D}^{\mathrm{K}, 2}=-C^{\mathfrak{g}}+B^{*}\left(\rho^{\mathfrak{g}}, \rho^{\mathfrak{g}}\right) .
$$

Remark

$\widehat{D}^{\text {Ko }}$ acts on $C^{\infty}\left(G, \Lambda^{\prime}\left(\mathfrak{g}^{*}\right)\right)$, while $C^{\mathfrak{g}}$ acts on $C^{\infty}(G, \mathbf{R})$.

The localization formulas of Berline-Vergne

Wick rotation and harmonic oscillator on \mathfrak{g}_{i}

The localization formulas of Berline-Vergne

Wick rotation and harmonic oscillator on \mathfrak{g}_{i}

- On $\mathfrak{g}_{i}=\mathfrak{p} \oplus \mathfrak{i k}, H^{\mathfrak{g}_{i}}$ harmonic oscillator on \mathfrak{g}_{i}.

The localization formulas of Berline-Vergne

Wick rotation and harmonic oscillator on \mathfrak{g}_{i}

- On $\mathfrak{g}_{i}=\mathfrak{p} \oplus \mathfrak{i k}, H^{\mathfrak{g}_{i}}$ harmonic oscillator on \mathfrak{g}_{i}.
- $H^{\mathfrak{g}_{i}}=\frac{1}{2}\left(-\Delta^{\mathfrak{g}_{i}}+|Y|^{2}-n\right)$.

Wick rotation and harmonic oscillator on \mathfrak{g}_{i}

- On $\mathfrak{g}_{i}=\mathfrak{p} \oplus \mathfrak{i k}, H^{\mathfrak{g}_{i}}$ harmonic oscillator on \mathfrak{g}_{i}.
- $H^{\mathfrak{g}_{i}}=\frac{1}{2}\left(-\Delta^{\mathfrak{g}_{i}}+|Y|^{2}-n\right)$.
- Witten operators $\underline{d}^{\mathfrak{g}_{i}}=d^{\mathfrak{g}_{i}}+Y \wedge, \underline{d}^{\mathfrak{g}_{i}{ }^{*}}=d^{\mathfrak{g}_{i}{ }^{*}}+i_{Y}$ acts on $C^{\infty}\left(\mathfrak{g}, \Lambda\left(\mathfrak{g}_{i}^{*}\right)\right)$

Wick rotation and harmonic oscillator on \mathfrak{g}_{i}

- On $\mathfrak{g}_{i}=\mathfrak{p} \oplus \mathfrak{i k}, H^{\mathfrak{g}_{i}}$ harmonic oscillator on \mathfrak{g}_{i}.
- $H^{\mathfrak{g}_{i}}=\frac{1}{2}\left(-\Delta^{\mathfrak{g}_{i}}+|Y|^{2}-n\right)$.
- Witten operators $\underline{d}^{\mathfrak{g}_{i}}=d^{\mathfrak{g}_{i}}+Y \wedge, \underline{d}^{\mathfrak{g}_{i}{ }^{*}}=d^{\mathfrak{g}_{i}{ }^{*}}+i_{Y}$ acts on $C^{\infty}\left(\mathfrak{g}, \Lambda^{\prime}\left(\mathfrak{g}_{i}^{*}\right)\right)$
- $D^{\mathfrak{g}_{i}}=\underline{d}^{\mathfrak{g}_{i}}+\underline{d}^{\mathfrak{g}_{i} *}$ Dirac like operator on \mathfrak{g}_{i}.

Wick rotation and harmonic oscillator on \mathfrak{g}_{i}

- On $\mathfrak{g}_{i}=\mathfrak{p} \oplus \mathfrak{i k}, H^{\mathfrak{g}_{i}}$ harmonic oscillator on \mathfrak{g}_{i}.
- $H^{\mathfrak{g}_{i}}=\frac{1}{2}\left(-\Delta^{\mathfrak{g}_{i}}+|Y|^{2}-n\right)$.
- Witten operators $\underline{d}^{\mathfrak{g}_{i}}=d^{\mathfrak{g}_{i}}+Y \wedge, \underline{d}^{\mathfrak{g}_{i}{ }^{*}}=d^{\mathfrak{g}_{i}{ }^{*}}+i_{Y}$ acts on $C^{\infty}\left(\mathfrak{g}, \Lambda^{\prime}\left(\mathfrak{g}_{i}^{*}\right)\right)$
- $D^{\mathfrak{g}_{i}}=\underline{d}^{\mathfrak{g}_{i}}+\underline{d}^{\mathfrak{g}_{i} *}$ Dirac like operator on \mathfrak{g}_{i}.
- $\frac{1}{2}\left[\underline{d}^{\mathfrak{g}_{i}}, \underline{d}^{\mathfrak{g}_{i} *}\right]=H^{\mathfrak{g}_{i}}+N^{\Lambda \cdot\left(\mathfrak{g}_{i}^{*}\right)}$.

The localization formulas of Berline-Vergne
Index theorem and localization formulas
The families index theorem Selberg's trace formula The orbital integrals as Berline-Vergne formulas Hypoelliptic Laplacian and orbital integrals

References

The operator \mathfrak{D}_{b}

The localization formulas of Berline-Vergne

The operator \mathfrak{D}_{b}

- \mathfrak{D}_{b} combination of Dirac operators on G and \mathfrak{g}.

The localization formulas of Berline-Vergne

The operator \mathfrak{D}_{b}

- \mathfrak{D}_{b} combination of Dirac operators on G and \mathfrak{g}.
- \mathfrak{D}_{b} acts on $C^{\infty}\left(G \times \mathfrak{g}, \Lambda^{\prime}\left(\mathfrak{g}_{\mathrm{C}}^{*}\right)\right)$.

The localization formulas of Berline-Vergne

The operator \mathfrak{D}_{b}

- \mathfrak{D}_{b} combination of Dirac operators on G and \mathfrak{g}.
- \mathfrak{D}_{b} acts on $C^{\infty}\left(G \times \mathfrak{g}, \Lambda^{\prime}\left(\mathfrak{g}_{\mathrm{C}}^{*}\right)\right)$.
- $\mathfrak{D}_{b}=\widehat{D}^{\mathrm{Ko}}+i c\left(\left[Y^{\mathfrak{k}}, Y^{\mathfrak{p}}\right]\right)+\frac{1}{b}\left(\underline{d}^{\mathfrak{g}_{i}}+\underline{d}^{\mathfrak{g}^{i} *}\right)$.

The localization formulas of Berline-Vergne

The operator \mathfrak{D}_{b}

- \mathfrak{D}_{b} combination of Dirac operators on G and \mathfrak{g}.
- \mathfrak{D}_{b} acts on $C^{\infty}\left(G \times \mathfrak{g}, \Lambda^{\prime}\left(\mathfrak{g}_{\mathrm{C}}^{*}\right)\right)$.
- $\mathfrak{D}_{b}=\widehat{D}^{\mathrm{Ko}}+i c\left(\left[Y^{\mathfrak{k}}, Y^{\mathfrak{p}}\right]\right)+\frac{1}{b}\left(\underline{d}^{\mathfrak{g}_{i}}+\underline{d}^{\mathfrak{g}_{i}{ }^{*}}\right)$.
- $\mathfrak{D}_{b} K$-invariant.

The operator \mathfrak{D}_{b}

- \mathfrak{D}_{b} combination of Dirac operators on G and \mathfrak{g}.
- \mathfrak{D}_{b} acts on $C^{\infty}\left(G \times \mathfrak{g}, \Lambda^{\cdot}\left(\mathfrak{g}_{\mathrm{C}}^{*}\right)\right)$.
- $\mathfrak{D}_{b}=\widehat{D}^{\mathrm{Ko}}+i c\left(\left[Y^{\mathfrak{k}}, Y^{\mathfrak{p}}\right]\right)+\frac{1}{b}\left(\underline{d}^{\mathfrak{g}_{i}}+\underline{d}^{\mathfrak{g}^{i} *}\right)$.
- $\mathfrak{D}_{b} K$-invariant.
- The quadratic term is related to the quotienting by K.

The localization formulas of Berline-Vergne

The hypoelliptic Laplacian

The localization formulas of Berline-Vergne

The hypoelliptic Laplacian

- Set $\mathcal{L}_{b}=\frac{1}{2}\left(-\widehat{D}^{\mathrm{Ko}, 2}+\mathfrak{D}_{b}^{2}\right)$.

The localization formulas of Berline-Vergne

The hypoelliptic Laplacian

- Set $\mathcal{L}_{b}=\frac{1}{2}\left(-\widehat{D}^{\mathrm{Ko,2}}+\mathfrak{D}_{b}^{2}\right)$.
- Quotient the construction by K.

The localization formulas of Berline-Vergne

The hypoelliptic Laplacian

- Set $\mathcal{L}_{b}=\frac{1}{2}\left(-\widehat{D}^{\mathrm{Ko}, 2}+\mathfrak{D}_{b}^{2}\right)$.
- Quotient the construction by K.
- $\mathfrak{g}=\mathfrak{p} \oplus \mathfrak{k}$ descends on X to $T X \oplus N$.

The hypoelliptic Laplacian

- Set $\mathcal{L}_{b}=\frac{1}{2}\left(-\widehat{D}^{\mathrm{K}, 2}+\mathfrak{D}_{b}^{2}\right)$.
- Quotient the construction by K.
- $\mathfrak{g}=\mathfrak{p} \oplus \mathfrak{k}$ descends on X to $T X \oplus N$.
- $\widehat{\pi}: \widehat{\mathcal{X}} \rightarrow X$ total space of $T X \oplus N$.

The hypoelliptic Laplacian

- Set $\mathcal{L}_{b}=\frac{1}{2}\left(-\widehat{D}^{\mathrm{Ko}, 2}+\mathfrak{D}_{b}^{2}\right)$.
- Quotient the construction by K.
- $\mathfrak{g}=\mathfrak{p} \oplus \mathfrak{k}$ descends on X to $T X \oplus N$.
- $\widehat{\pi}: \widehat{\mathcal{X}} \rightarrow X$ total space of $T X \oplus N$.
- \mathcal{L}_{b}^{X} acts on $C^{\infty}\left(\widehat{\mathcal{X}}, \widehat{\pi}^{*} \Lambda^{\prime}\left(T^{*} X \oplus N^{*}\right)\right)$.

The hypoelliptic Laplacian

- Set $\mathcal{L}_{b}=\frac{1}{2}\left(-\widehat{D}^{\mathrm{Ko}, 2}+\mathfrak{D}_{b}^{2}\right)$.
- Quotient the construction by K.
- $\mathfrak{g}=\mathfrak{p} \oplus \mathfrak{k}$ descends on X to $T X \oplus N$.
- $\widehat{\pi}: \widehat{\mathcal{X}} \rightarrow X$ total space of $T X \oplus N$.
- \mathcal{L}_{b}^{X} acts on $C^{\infty}\left(\widehat{\mathcal{X}}, \widehat{\pi}^{*} \Lambda^{\prime}\left(T^{*} X \oplus N^{*}\right)\right)$.

Remark

Using the fiberwise Bargmann isomorphism, \mathcal{L}_{b}^{X} acts on

$$
C^{\infty}\left(X, S^{*}\left(T^{*} X \oplus N^{*}\right) \otimes \Lambda^{\prime}\left(T^{*} X \oplus N^{*}\right)\right) .
$$

The localization formulas of Berline-Vergne

Hypoelliptic Laplacian and Fokker-Planck

Hypoelliptic Laplacian and Fokker-Planck

$$
\mathcal{L}_{b}^{X}=\frac{1}{2}\left|\left[Y^{N}, Y^{T X}\right]\right|^{2}+\underbrace{\frac{1}{2 b^{2}}\left(-\Delta^{T X \oplus N}+|Y|^{2}-n\right)}_{\text {Harmonic oscillator of } T X \oplus N}+\frac{N^{\Lambda(}\left(T^{*} X \oplus N^{*}\right)}{b^{2}}
$$

$$
+\frac{1}{b}(\underbrace{\nabla_{Y T X}}_{\text {geodesic flow }}+\widehat{c}\left(\operatorname{ad}\left(Y^{T X}\right)\right)-c\left(\operatorname{ad}\left(Y^{T X}\right)+i \theta \operatorname{ad}\left(Y^{N}\right)\right)) .
$$

Hypoelliptic Laplacian and Fokker-Planck

$$
\mathcal{L}_{b}^{X}=\frac{1}{2}\left|\left[Y^{N}, Y^{T X}\right]\right|^{2}+\underbrace{\frac{1}{2 b^{2}}\left(-\Delta^{T X \oplus N}+|Y|^{2}-n\right)}_{\text {Harmonic oscillator of } T X \oplus N}+\frac{N^{\Lambda \cdot\left(T^{*} X \oplus N^{*}\right)}}{b^{2}}
$$

$$
+\frac{1}{b}(\underbrace{\nabla_{Y^{T X}}}_{\text {geodesic flow }}+\widehat{c}\left(\operatorname{ad}\left(Y^{T X}\right)\right)-c\left(\operatorname{ad}\left(Y^{T X}\right)+i \theta \operatorname{ad}\left(Y^{N}\right)\right))
$$

Remark

Hypoelliptic Laplacian and Fokker-Planck

$$
\mathcal{L}_{b}^{X}=\frac{1}{2}\left|\left[Y^{N}, Y^{T X}\right]\right|^{2}+\underbrace{\frac{1}{2 b^{2}}\left(-\Delta^{T X \oplus N}+|Y|^{2}-n\right)}_{\text {Harmonic oscillator of } T X \oplus N}+\frac{N^{\Lambda\left(T^{*} X \oplus N^{*}\right)}}{b^{2}}
$$

$$
+\frac{1}{b}(\underbrace{\nabla_{Y T X}}_{\text {geodesic flow }}+\widehat{c}\left(\operatorname{ad}\left(Y^{T X}\right)\right)-c\left(\operatorname{ad}\left(Y^{T X}\right)+i \theta \operatorname{ad}\left(Y^{N}\right)\right)) .
$$

Remark

- $b \rightarrow 0, \mathcal{L}_{b}^{X} \rightarrow \frac{1}{2}\left(C^{\mathfrak{g}, X}-c\right): \widehat{\mathcal{X}}$ collapses to X (B. 2011)

Hypoelliptic Laplacian and Fokker-Planck

$$
\mathcal{L}_{b}^{X}=\frac{1}{2}\left|\left[Y^{N}, Y^{T X}\right]\right|^{2}+\underbrace{\frac{1}{2 b^{2}}\left(-\Delta^{T X \oplus N}+|Y|^{2}-n\right)}_{\text {Harmonic oscillator of } T X \oplus N}+\frac{N^{\Lambda^{\prime}\left(T^{*} X \oplus N^{*}\right)}}{b^{2}}
$$

$$
+\frac{1}{b}(\underbrace{\nabla_{Y^{T X}}}_{\text {geodesic flow }}+\widehat{c}\left(\operatorname{ad}\left(Y^{T X}\right)\right)-c\left(\operatorname{ad}\left(Y^{T X}\right)+i \theta \operatorname{ad}\left(Y^{N}\right)\right))
$$

Remark

- $b \rightarrow 0, \mathcal{L}_{b}^{X} \rightarrow \frac{1}{2}\left(C^{\mathfrak{q}, X}-c\right): \widehat{\mathcal{X}}$ collapses to X (B. 2011)
$\bullet b \rightarrow+\infty$, geodesic f. $\nabla_{Y^{T X}}$ dominates \Rightarrow closed geodesics.

The localization formulas of Berline-Vergne

The orbital integrals as Berline-Vergne formulas Hypoelliptic Laplacian and orbital integrals

A fundamental identity

The localization formulas of Berline-Vergne

The orbital integrals as Berline-Vergne formulas
Hypoelliptic Laplacian and orbital integrals
References

A fundamental identity

Theorem (B. 2011)

For $b>0, t>0$,

$$
\operatorname{Tr}^{[\gamma]}\left[\exp \left(-t\left(C^{\mathfrak{g}, X}-c\right) / 2\right)\right]=\operatorname{Tr}_{\mathrm{s}}{ }^{[\gamma]}\left[\exp \left(-t \mathcal{L}_{b}^{X}\right)\right] .
$$

A fundamental identity

$$
\begin{aligned}
& \text { Theorem (B. 2011) } \\
& \text { For } b>0, t>0 \\
& \qquad \operatorname{Tr}^{[\gamma]}\left[\exp \left(-t\left(C^{\mathfrak{g}, X}-c\right) / 2\right)\right]=\operatorname{Tr}_{\mathrm{s}}^{[\gamma]}\left[\exp \left(-t \mathcal{L}_{b}^{X}\right)\right] .
\end{aligned}
$$

Remark

The proof uses the fact that $\operatorname{Tr}^{[\gamma]}$ is a trace on the algebra of G-invariants smooth kernels on X with Gaussian decay.

A fundamental identity

Theorem (B. 2011)

For $b>0, t>0$,

$$
\operatorname{Tr}^{[\gamma]}\left[\exp \left(-t\left(C^{\mathrm{g}, X}-c\right) / 2\right)\right]=\operatorname{Tr}_{\mathrm{s}}{ }^{[\gamma]}\left[\exp \left(-t \mathcal{L}_{b}^{X}\right)\right] .
$$

Remark

The proof uses the fact that $\mathrm{Tr}^{[\gamma]}$ is a trace on the algebra of G-invariants smooth kernels on X with Gaussian decay. Analog of $\int_{X} \mu=\int_{X} \alpha_{1 / b^{2}} \mu$.

The localization formulas of Berline-Vergne

The limit as $b \rightarrow+\infty$

The localization formulas of Berline-Vergne

The limit as $b \rightarrow+\infty$

- After rescaling of $Y^{T X}, Y^{N}$, as $b \rightarrow+\infty$,

$$
\mathcal{L}_{b} \simeq \frac{b^{4}}{2}\left|\left[Y^{N}, Y^{T X}\right]\right|^{2}+\frac{1}{2}|Y|^{2}-\underbrace{\nabla_{Y^{T X}}}_{\text {geodesic flow }} .
$$

The limit as $b \rightarrow+\infty$

- After rescaling of $Y^{T X}, Y^{N}$, as $b \rightarrow+\infty$, $\mathcal{L}_{b} \simeq \frac{b^{4}}{2}\left|\left[Y^{N}, Y^{T X}\right]\right|^{2}+\frac{1}{2}|Y|^{2}-\underbrace{\nabla_{Y^{T X}}}_{\text {geodesic flow }}$.
- As $b \rightarrow+\infty$, the orbital integral localizes near a manifold of geodesics in X associated with γ.

The limit as $b \rightarrow+\infty$

- After rescaling of $Y^{T X}, Y^{N}$, as $b \rightarrow+\infty$,

$$
\mathcal{L}_{b} \simeq \frac{b^{4}}{2}\left|\left[Y^{N}, Y^{T X}\right]\right|^{2}+\frac{1}{2}|Y|^{2}-\underbrace{\nabla_{Y^{T X}}}_{\text {geodesic flow }} .
$$

- As $b \rightarrow+\infty$, the orbital integral localizes near a manifold of geodesics in X associated with γ.
- One uses a global Getzler rescaling.

The limit as $b \rightarrow+\infty$

- After rescaling of $Y^{T X}, Y^{N}$, as $b \rightarrow+\infty$,

$$
\mathcal{L}_{b} \simeq \frac{b^{4}}{2}\left|\left[Y^{N}, Y^{T X}\right]\right|^{2}+\frac{1}{2}|Y|^{2}-\underbrace{\nabla_{Y T X}}_{\text {geodesic flow }} .
$$

- As $b \rightarrow+\infty$, the orbital integral localizes near a manifold of geodesics in X associated with γ.
- One uses a global Getzler rescaling.
$\left.\bullet \underbrace{\left.\int_{X} \mu\right|_{t=+\infty}}_{\text {global }} \longrightarrow \underbrace{\left.\int_{X} \alpha_{t} \mu\right|_{t>0}}_{\text {local }} \frac{\mu}{\int_{X_{K}} \frac{\mu}{e_{K}\left(N_{X_{K} / X}\right)}}\right|_{t=0}$.

The limit as $b \rightarrow+\infty$

- After rescaling of $Y^{T X}, Y^{N}$, as $b \rightarrow+\infty$,

$$
\mathcal{L}_{b} \simeq \frac{b^{4}}{2}\left|\left[Y^{N}, Y^{T X}\right]\right|^{2}+\frac{1}{2}|Y|^{2}-\underbrace{\nabla_{Y^{T X}}}_{\text {geodesic flow }} .
$$

- As $b \rightarrow+\infty$, the orbital integral localizes near a manifold of geodesics in X associated with γ.
- One uses a global Getzler rescaling.
$\left.\underbrace{\left.\int_{X} \mu\right|_{t=+\infty}}_{\text {global }} \xrightarrow{\left.\int_{X} \alpha_{t} \mu\right|_{t>0}} \underbrace{\int_{X_{K}} \frac{\mu}{e_{K}\left(N_{X_{K} / X}\right)}}_{\text {local }}\right|_{t=0}$.
$\bullet \underbrace{\operatorname{Tr}^{[\gamma]}\left[\exp \left(-t C^{\mathfrak{g}, X}\right)\right]_{b=0}} \xrightarrow{\left.\operatorname{Tr}_{\mathbf{s}} \gamma\left[g \exp \left(-t D_{b}^{R, 2}\right)\right]\right|_{b>0}} \underbrace{\text { Geom. formula }\left.\right|_{b=+\infty}}$.

The localization formulas of Berline-Vergne

Orbital integrals and center of the enveloping algebra (B SHEN 22)

The localization formulas of Berline-Vergne

Orbital integrals and center of the enveloping algebra (B SHEN 22)

- With Shen we extended previous formula from $C^{\mathfrak{g}}$ to $Z(\mathfrak{g})$.

Orbital integrals and center of the enveloping algebra (B SHEN 22)

- With Shen we extended previous formula from $C^{\mathfrak{g}}$ to $Z(\mathfrak{g})$.
- We met again a crucial theme in Michèle's work: why \widehat{A} appears both in index theorem and in the Duflo isomorphism?

Orbital integrals and center of the enveloping algebra (B SHEN 22)

- With Shen we extended previous formula from $C^{\mathfrak{g}}$ to $Z(\mathfrak{g})$.
- We met again a crucial theme in Michèle's work: why \widehat{A} appears both in index theorem and in the Duflo isomorphism?
- The Duflo-Harish Chandra isomorphism appears explicitly in our formula.

The localization formulas of Berline-Vergne
Index theorem and localization formulas
The families index theorem Selberg's trace formula The orbital integrals as Berline-Vergne formulas Hypoelliptic Laplacian and orbital integrals

References

R N. Berline and M. Vergne, Zéros d'un champ de vecteurs et classes caractéristiques équivariantes, Duke Math. J. 50 (1983), no. 2, 539-549. MR 84i:58114

- J.-M. Bismut, The infinitesimal Lefschetz formulas: a heat equation proof, J. Funct. Anal. 62 (1985), no. 3, 435-457. MR 87a:58144

蔦 \qquad The Atiyah-Singer index theorem for families of Dirac operators: two heat equation proofs, Invent. Math. 83 (1986), no. 1, 91-151. MR 87g:58117

目 N. Berline, E. Getzler, and M. Vergne, Heat kernels and Dirac operators, Grundl. Math. Wiss. Band 298, Snrinopr-Vprlao Rerlin 1999 MR 94e.58130

The localization formulas of Berline-Vergne

目 J.-M. Bismut, Hypoelliptic Laplacian and orbital integrals, Annals of Mathematics Studies, vol. 177, Princeton University Press, Princeton, NJ, 2011. MR 2828080

國 J.-M. Bismut and S. Shen, Geometric orbital integrals and the center of the enveloping algebra, Compositio Mathematica 158 (2022), no. 6, 1189-1253.

The localization formulas of Berline-Vergne

Toutes mes amitiés, Michèle!

